Temporal threshold values (cutoffs) are inherently arbitrary and depend on conventions that taxonomists must agree upon. Thus countless alternatives are possible. Below, I
present three alternative sets of cutoffs, one of which, depending on the outcome of refined future fossil calibrations and divergence-times estimates, might be implemented one day for avian chronoclassification:
Alternative sets of serial temporal cutoffs defining categorical ranks for avian chronoclassification.
Ranks and their respective endings follow the pioneering study of Sibley et al. (1988).
[black: class-group names are not regulated, blue: order-group names and
endings are not regulated, green: family-group names and endings covered by ICZN-code, red: genus-group names covered by
ICZN-code, grey: species-group names covered by ICZN-code].
For comparison:
To provide temporal information for clades above class rank, either timeclips (Avise & Mitchell, 2007), or plain age information (Zachos et al., 2011) could be used. The
combined use of temporal thresholds and timeclipping provides both relative nomenclatural stability within classes as well as temporal comparability among classes.
References
Avise JC, and Johns GC (1999), Proposal for a standardized temporal scheme of biological classification for extant species, Proc. Natl. Acad. Sci. 96, 7358-63. (pdf)
Avise JC, and Mitchell D (2007), Time to standardize taxonomies, Syst. Biol. 56, 130-133. (free pdf)
Avise JC, and Liu JX (2011), On the temporal inconsistencies of Linnean taxonomic ranks, Biol. J. Linn. Soc. 102, 707-714. (free pdf)
Barker FK, Burns KJ, Klicka J, Lanyon SM, and Lovette Zizka (2015), New insights into New World biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies, Auk 132, 333-338. (free pdf)
Cai T, Cibois A, Alström P, Moyle RG, Kennedy JD, Shao S, Zhang R, Irestedt M, Ericson PGP, Gelang M, Qu Y, Lei F, and Fjeldså (2019), Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes), Mol. Phylogenet. Evol. 130, 346-356. (abstract)
Cai T, Wu G, Sun L, Zhang Y, Peng Z, Guo Y, Liu X, Pan T, Chang J, Sun Z, and Zhang B (2021), Biogeography and diversification of Old World buntings (Aves: Emberizidae): radiation in open habitats, J. Avian Biol., e:02672. (free reading)
Cracraft J (1981), Toward a phylogenetic classification of the recent birds of the world (class Aves), Auk 98, 681-714. (abstract)
Divakar PK, Crespo A, Kraichak E, Leavitt SD, Singh G, Schmitt I, and Lumbsch HT (2017), Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi, Fungal Divers. 84, 101-117. (abstract)
Dubois A (2008), Phylogenetic hypotheses, taxa and nomina in zoology, Zootaxa 1950, 51-86. (pdf)
Fjeldså J, Christidis L, Ericson PGP, Stervander M, Ohlson LI, and Alström P (2020), An updated classification of passerine birds, In: The largest avian radiation (Fjeldså, J, Christidis L, and Ericson PGP, eds.), pp. 45-63. Lynx Edicions, Barcelona. (link)
Garnett ST, and Christidis L (2017), Taxonomy anarchy hampers conservation, Nature 546, 25-27. (pdf)
Hawthorne WD, and Hughes CE (2008), Optimising linear taxon sequences derived from phylogenetic trees – a reply to Haston & al., Taxon 57, 698-704. (pdf)
Hennig W (1966) Phylogenetic systematics, University of Illinois Press, Chicago, IL. (online book) (pdf)
Holt BG, and Jønsson KA (2014), Reconciling hierarchical taxonomy with molecular phylogenies, Syst. Biol. 63, 1010-17. (pdf)
Jetz W, Thomas GH, Joy JB, Hartmann K, and Mooers AO (2012), The global diversity of birds in space and time, Nature 491, 444-448. (abstract)
Jønsson KA, Fabre PH, Kennedy JD, Holt BG, Borregaard MK, Rahbek C, and Fjeldså J (2016), A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides), Mol. Phylogenet. Evol. 94, 87-94. (abstract)
Kraichak
E,
Crespo A, Divakar PK, Leavitt SD, and Lumbsch HT (2017), A temporal banding approach for consistent taxonomic ranking above the species level, Sci. Rep. 7, e:2297. (pdf)
Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, and Hedges SB (2022), TimeTree 5: an expanded resource for species divergence times, Mol. Biol. Evol. 39, e:msac174. (free pdf)
Laurin M (2010), The subjective nature of Linnaean categories and its impact in evolutionary biology and biodiversity studies, Contrib. Zool. 79, 131-146. (pdf)
Lücking R (2019), Stop the abuse of time! Strict temporal banding is not the future of rank-based classifications in fungi (including lichens) and other organisms, CRC Crit. Rev. Plant Sci. 38, 199-253. (abstract)
Mayr E, and Bock WJ (2002), Classifications and other ordering systems, J. Zool. Syst. Evol. Research 40, 169-194. (pdf)
Minelli
A
(2023),
Linear listing order and hierarchical classification: history, conflict, and use, Eur. J. Taxon. 908, 1-26. (pdf)
Naomi
SI
(2014), Proposal of an integrated framework of biological taxonomy: a phylogenetic taxonomy, with the method of using names with standard endings in clade nomenclature, Bionomina 7, 1-44.
(pdf)
Remsen
JV,
Powell AFLA, Schodde R, Barker FK, and Lanyon SM (2016), A revised
classification of the Icteridae (Aves) based on DNA sequence data, Zootaxa
Sangster G, Cibois A, and Sushma R (2022), Pteruthiidae and Erpornithidae (Aves: Corvides): two new family-group names for babbler-like outgroups of the vireos (Vireonidae), Bull. BOC 142, 239-243. (free pdf)
Shirazinejad MP, Aliabadian M, and Mirhamsi O (2019), The evolutionary history of the white wagtail species complex (Passeriformes: Motacillidae: Motacilla alba), Contrib. Zool. 88, 257-276. (free pdf)
Sibley CG, Ahlquist JE, and Monroe BL (1988), A classification of the living birds of the world based on DNA-DNA hybridization studies, Auk 105, 409-423. (pdf)
Vences M, Guayasamin JM, Miralles A, and de la Riva I (2013), To name or not to name: criteria to promote economy of change in Linnaean classification schemes, Zootaxa 3636, 201-244. (pdf)
Zachos FE (2011), Linnean ranks, temporal banding, and time-clipping: why not slaughter the sacred cow? Biol. J. Linn. Soc. 103, 732-734. (free pdf)
Zhao RL, Zhou JL, Chen J, Margaritescu S, Sanchéz-Ramírez S, Hyde KD, Callac P, Parra LA, Li GJ, and Moncalvo JM (2016), Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the Agaricus taxonomic system, Fungal Divers. 78, 239-292. (abstract)