Higher phylogeny

Some 10,500 bird species are inhabiting the Earth today, but nearly two hundred species have already gone extinct in historic times as a result of human activities, primarily due to deforestation and sometimes hunting. Another 1,200 bird species are considered to be under threat of extinction (link)The relationships among extant orders, which in birds are traditionally indicated by the latin suffix -iformes, are shown in the following timetree:


Timetree showing phylogenetic interrelationships among avian orders. The timetree follows Jarvis et al. (2014), Claramunt & Cracraft (2015), Prum et al. (2015), Ksepka et al. (2017), Reddy et al. (2017), Crouch et al. (2019), Field et al. (2019), Gilbert et al. (2019), Houde et al. (2019), and Kimball et al. (2019). Supposed crown-group ages are indicated by blue lines, with details on crown-group ages being given in the respective Individual orders section. 


Modern or crown birds are represented by two principal clades, Palaeognathae and Neognathae, which diverged from each other during the Cretaceous, some 110 mya. The unresolved main radiations within Neognathae occurred around 65 mya, following the Chicxulub asteroid impact on the Yucatan peninsula in Mexico 66 mya. After the demise of non-avian dinosaurs, possibly as a result of the bolide impact, birds underwent a rapid diversification, a so-called radiation. This might explain the unresolved polytomy at the base of Neoaves. Moreover, the timetree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. 


Divergence time estimates are based on molecular dating techniques, which in turn depend on reliable fossil calibrations (i.e. correctly dated and taxonomically correctly placed fossils). The estimated divergence time of a given clade often differs significantly among authors, largely depending on the selection of fossils and the maximum age constraint set be the investigators (Cracraft et al., 2015). 


Burleigh, J.G., R.T. Kimball, and E.L. Braun (2015), Building the avian tree of life using a large-scale, sparse supermatrix , Mol. Phylogenet. Evol. 84, 53-63.

DOI: 10.1016/j.ympev.2014.12.003. (abstract)

Claramunt, S., and J. Cracraft (2015), A new time tree reveals Earth history´s imprint on the evolution of modern birds, Sci. Adv. 2015;1:e1501005 (pdf)

Cloutier, A., T.B. Sackton, P. Grayson, M. Clamp, A.J. Baker, and S.V. Edwards (2018), Whole-genome analyses resolve the phylogeny of flightless birds

(Palaeognathae) in the presence of an empirical anomaly zone, BioRxiv(pdf)

Cracraft, J. et al. (2015), Response to comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds”, Science 349, Issue

6255, pp. 1460, DOI: 10.1126/science.aab1062 (pdf)

Crouch, N.M.A., K. Ramanauskas, and B. Igic (2019), Tip-dating and the origin of Telluraves, Mol. Phylogenet. Evol. 131, 55-63, DOI:

10.1016/j.ympev.2018.10.006. (abstract)

de Quieroz, K., P.D. Cantino, and J.A. Gauthier (Eds.) (2020, forthcoming), Phylonyms: a companion to the PhyloCode, CRC Press, Boca Raton, Fl, USA

del Hoyo, J., N.J. Collar, D.A. Christie, A. Elliott, and L.D.C. Fishpool (2014), Illustrated Checklist of the Birds of the World, volume I (Non-passerines),

published by Lynx Edicions in association with BirdLife. (link)

Ericson, P.G.P., C.L. Anderson, T. Britton, A. Elzanowski, U. S. Johansson, M. Kallersjo, J.I. Ohlson, T.J. Parsons, D. Zuccon, and G. Mayr (2006),

Diversification of Neoaves: integration of molecular sequence data and fossils, Biol. Lett. 2, 543-547. (pdf)

Field, D.J. J.S. Berv, A.Y. Hsiang, R. Lanfear, M.J. Landis, and A. Dornburg (2019), Timing the extant avian radiation: the rise of modern birds, and the

importance of modeling molecular rate variation, PeerJ Preprints, publ: 6 Feb 2019. DOI: 10.7287/peerj.preprints.27521v1. (pdf)

Gilbert, P.S., J. Wu, M.W. Simon, J.S. Sinsheimer, and M.E. Alfaro (2019), Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence

in the Neoaves phylogeny generated from ultraconserved elements, Mol.Phylogenet. Evol. 126, 116-128. DOI:10.1016/j.ympev.2018.03.033. (abstract)

Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K-L. Han, J. Harshman, C.J. Huddleston, B.D.

Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri (2008), A phylogenetic study of birds reveals their evolutionary history, Science 320, 1763-1767. (abstract)

Heine, C., J. Zoethout, and R.D. Müller (2013), Kinematics of the South Atlantic rift, Solid Earth 4, 215-253. (pdf)

Houde, P., E.L. Braun, N. Narula, U. Minjares, and S. Mirarab (2019), Phylogenetic signal of indels and the Neoavian radiation, Diversity. 11, 108. DOI:

10.3390/d11070108. (pdf)

Holt, B.J. and K.A. Jonsson (2014), Reconciling hierarchical taxonomy with molecular phylogenies, Syst. Biol. 63, 1010-1017. (pdf) 

Jarvis, E.D. et al. (2014), Whole-genome analysis resolve early branches in the tree of life of modern birds, Science 346, 1320-1331. (pdf)

Kimball, R.T., C.H. Oliveros, N. Wang, N.D. White, F.K.Barker, D.J.Field, D.T. Ksepka, R.T. Chesser, R.G.Moyle, M.J. Braun, R.T. Brumfield, B.C. Faircloth,

B.T. Smith, and E.L. Braun (2019), A phylogenomic supertree of birds, Diversity 11, 109. DOI: 10.3390/d11070109. (pdf)

Ksepka, D.T., T.A. Stidham, and T.E. Williamson (2017), Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown

birds after the K-Pg mass extinction, PNAS 114(30), 8047-8052. DOI: 10.1073/pnas.1700188114. (pdf)

Mitchell, K.J., A. Cooper, and M.J. Phillips (2015), Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds", Science

351. (pdf)

Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon, and A.R. Lemmon (2015), A comprehensive phylogeny of birds (Aves) using

targeted next-generation DNA sequencing, Nature 526, 569-57. (abstract)

Reddy, S., et al. (2017), Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling, Syst.

Biol. 66(4); 857-879. (pdf)

Suh, A., L. Smeds, and H. Ellegren (2015), The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds, PLoS Biology

 13: e1002224. (pdf)

Suh, A. (2016), The phylogenetic forest of bird trees contains a hard polytomy at the root of Neoaves, Zoologica Scripta 45, 50-62. (pdf)

Tamashiro, R.A., N.D. White, M.J. Braun, B.C. Faircloth,, E.L. Braun, and R.T. Kimball (2019), What are the roles of taxon sampling and model fit in tests of

cyto-nuclear discordance using avian mitogenomic data?, Mol. Phylogenet. Evol. 130, 132-142. DOI: 10.1016/j.ympev.2018.10.008. (abstract)

Vellekoop, J., A. Sluijs, J. Smit, S. Schouten, J.W.H. Weijers, J.S. Sinninghe Dámste, and H. Brinkhuis (2014), Rapid short-term cooling following the

Chicxulub impact at the Cretaceous-Paleogne boundary, PNAS 111, 7537-7541. (pdf)

Yuri, T., R.T. Kimball, J.Harshman, R.C.K. Bowie, M.J. Braun, J.L. Chojnowski, K.-L. Han, S.J. Hackett, C.J. Huddleston, W.S. Moore, S. Reddy, F.H.

Sheldon, D.W. Steadman, C.C. Witt, and E.L. Braun (2013), Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals, Biology 2, 419-444. (pdf)