Hebert et al. (2003) first proposed the idea that animal species can be distinguished by comparing a 648-bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI)
gene. The length of the fragment is technically limited by the Sanger sequencing method. The COI barcoding can be used for two purposes:
A.) Indication/discovery/delimitation of new species
B.) Identification of known species
In both cases, query sequences are compared with sequences stored in reference libraries like GenBank and BOLD (Barcode of Life Data Systems). The reference libraries need to be
accurate, comprehensive and taxonomically updated.
To determine genetic diversity levels between taxa, pairwise genetic distances need to be established.
COI sequences have been chosen as species markers because it turned out that in vertebrates (including birds) species are separated from close congeneric species by CO1 sequence divergences higher than 2%, while sequence divergences among conspecifics are usually less than 2% (Hebert et al., 2003). The 2%-threshold genetic distance is not a strict biological boundary, but rather a heuristic tool.
Misleadingly, this phenomenon is referred to as the “barcode gap” (Meyer & Paulay, 2005).
In a comparative avian mitogenomic study, the CO1 gene proved to be the one with the least amount of rate heterogeneity across avian orders, thus being closest to a “molecular clock” (Pacheco et al., 2011). Thus, the suitability of COI gene sequences as indicators of species limits simply reflects the fact that they serve as a reliable time scale. It should be noted, however, that mitochondrial DNA is inherited maternally only.
References
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, and Toteja R (2023), DNA barcoding, an effective tool for species identification: a review, Mol. Biol. Rep. 50, 761-775. (abstract)
Barreira AS, Lijtmaer DA, and Tubaro PL (2016), The multiple applications of DNA barcodes in avian evolutionary studies, Genome 59, 899-911. (pdf)
Breman FC, Jordaens K, Sonet G, Nagy ZT, Van Houdt J, and Louette M (2012), DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives, J. Ornithol. 154, 265-287. (abstract)
Campagna L, Lijtmaer DA, Kerr KCR, Barreira AS, Hebert PDN, Lougheed SC, and Tubaro PL (2010), DNA barcodes provide new evidence of a recent radiation in the genus Sporophila (Aves: Passeriformes), Mol. Ecol. Resour. 10, 449-458. (abstract)
Čandek K, and Kuntner M (2014), DNA barcoding gap: reliable species identification over morphological and geographical scales, Mol. Ecol. 15, 268-277. (abstract)
Chaves AV, Clozato CL, Lacerda DR, Sari EHR, and Santos FR (2008), Molecular taxonomy of Brazilian tyrant-flycatchers (Passeriformes: Tyrannidae), Mol. Ecol. Resour. 8, 1169-77. (abstract)
Chaves BRN, Chaves AV, Nascimento ACA, Chevitarese J, Vasconcelos MF, and Santos FR (2015), Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group, Mol. Ecol. Resour. 15, 921-931. (abstract)
Clark A, Koc G, Eyre-Walker Y, and Eyre-Walker A (2023), What determines levels of mitochondrial genetic diversity in birds?, Genome Biol. Evol. 15, e:evad064. (free pdf)
Colihueque N, Gantz A, and Parraguez M (2021), Revealing the biodiversity of Chilean birds through the COI barcode approach, ZooKeys 1016, 143-161. (free pdf)
DeSalle R, and Goldstein P (2019), Review and interpretation of trends in DNA barcoding, Front. Ecol. Evol. 7, e:302. (free pdf)
Fregin S, Haase M, Olsson U, and Alström P (2012), Pitfalls in comparisons of genetic distances: A case study of the avian family Acrocephalidae, Mol. Phylogenet. Evol. 62, 319-328. (abstract)
Hebert
PDN,
Cywinska A, Ball SL, and deWaard JR (2003), Biological identifications through DNA barcodes, Proc. Roy. Soc. Lond. B 270, 313-321. (pdf)
Hebert PDN, Stoeckle MY, Zemlak TS, and Francis CM (2004), Identification of birds through DNA barcodes, PLOS Biology 2, e:312. (pdf)
Huang Z, and Ruan R (2017), DNA barcodes and insights into the phylogenetic relationships of Corvidae (Aves: Passeriformes), Mitochondrial DNA Part A 29, 529-534. (abstract)
Jaito W, Sonongbua J, Panthum T, Wattanadilokcahtkun P, Ariyaraphong N, Thong T, Singchat W, Ahmad SF, Kraichak E, Muangmai N, Han K, Antunes A, Sitdhibutr R, Koga A, Duengkae P, Kasorndorkbua C, and Srikulnath K (2024), Disclosing the hidden nucleotide sequences: a journey into DNA barcoding of raptor species in public repositories, Genes Genomics 46, 95-112 (abstract)
Javaheri Tehrani S, Rezazadeh E, Alaei Kakhki N, Nourani L, Ebadi V, Karimi M, Ashouri F, Sarshar A, Gossmann TI, and Alibadian M (2025), DNA barcoding of passerine birds in Iran, ZooKeys 1236, 19-39. (free pdf)
Johnsen A, Rindal E, Ericson PGP, Zuccon D, Kerr KCR, Stoeckle MY, and Lifjeld JT (2010), DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species, J. Ornithol. 151, 565-578. (free pdf)
Kekkonen M, and Hebert PDN (2014), DNA barcode-based delineation of putative species: efficient start for taxonomic workflows, Mol. Ecol. Resour. 14, 706-715. (pdf)
Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, and Hebert PDN (2007), Comprehensive DNA barcode coverage of North American birds, Mol. Ecol. Notes 7, 535-543. (pdf)
Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, and Tubaro PL (2009), Probing evolutionary patterns in Neotropical birds through DNA barcodes, PLoS ONE 4, e:4379. (pdf)
Lijtmaer DA, Kerr KCR, Stoeckle MY, and Tubaro PL (2012), DNA barcoding birds: from field collection to data analysis, in: “DNA Barcodes’” (Kress W, and Erickson D, eds.), Methods in Molecular Biology, vol. 858. (link)
Lohman DJ,
Prawiradilaga DM, and Meier R (2009), Improved COI barcoding primers for Southeast Asian perching birds (Aves: Passeriformes), Mol. Ecol. Resour. 9, 37-40. (abstract)
Mallo D, and Posada D (2016), Multilocus inference of species trees and DNA barcoding, Philos. Trans. R. Soc. Lond. B 371, e:20150335 (pdf)
Meiklejohn KA, Damaso N, and Robertson JM (2019), Assessment of BOLD and GenBank – their accuracy and reliability for the identification of biological materials, PLoS ONE 14, e:0217084. (pdf)
de Melo AA, Nunes R, and de Campos MP (2021), Same information, new applications: revisiting primers for the avian COI gene and improving DNA barcoding identification, Organ. Divers. Evol. 21, 599-614. (abstract)
Miralles A, Puillandre N, and Vences M (2024), DNA barcoding in species delimitation: from genetic distances to integrative taxonomy, In: “DNA Barcoding.” (DeSalle R, ed), Meth. Mol. Biol. 2744, Humana, New York. (abstract)
Mulvaney J, Moir M, and Cherry MI (2023), DNA barcoding reveals cryptic diversification and taxonomic discordance among bats and birds within Sub-Saharan Africa, Biodivers. Conserv. 32, 4895-914. (free pdf)
Patel S, Waugh J, Millar CD, and Lambert DM (2010), Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds, Mol. Ecol. Resour. 10, 431-438. (abstract)
Paulay G, and Meyer CP (2005), DNA barcoding: error rates based on comprehensive sampling, PLOS Biol. 3, e:422. (pdf)
Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, and Vogler AP (2006), Sequence-based species delimitation for the DNA taxonomy of undescribed species, Syst. Biol. 55, 595-609. (abstract)
Ratnasingham S, and Hebert PDN (2007), BOLD: the barcode of life data system (www.barcodinglife.org), Mol. Ecol. Notes 7, 355-364. (pdf)
Savolainen V, Cowan RS, Vogler AP, Roderick GK, and Lane R (2005), Towards writing the encyclopaedia of life: an introduction to DNA barcoding, Philos. Trans. R. Soc. Lond. B 360, 1805-11. (abstract)
Shen YY, Chen X, and Murphy RW (2013), Assessing DNA barcoding as a tool for species identification and data quality control, PLOS ONE 8, e:57125. (pdf)
Tavares ES, and Baker AJ (2008), Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds, BMC Ecol. Evol. 8, e:81. (free pdf)
Tavares ES, Gonçalves P, Miyaki CY, and Baker AJ (2011), DNA barcode detects high genetic structure within Neotropical bird species, PLoS ONE 6, e:28543. (pdf)
Tizard J, Patel S, Waugh J, Tavares E, Bergmann T, Gill B, Norman J, Christidis L, Scofield P, Haddrath O, Baker A, Lambert D, and Millar C (2019), DNA barcoding a unique a avifauna: an important tool for evolution, systematics and conservation, BMC Ecol. Evol. 19, e:52. (free pdf)