Galliformes

This order comprises the following families:

  • Megapodiidae (megapodes)
  • Cracidae (chachalacas, guans, curassows, Horned Guan)
  • Numididae (guineafowl)
  • Odontophoridae (New World quails, African stone partridges)
  • Phasianidae (turkeys, grouse, pheasants, partridges)

DATED PHYLOGENY

Dated phylogenies, in which branchlengths are proportional to time, are usually referred to as chronograms or less often timetrees. The dated genus-level phylogenetic relationships among extant Galliformes are shown below (click to enlarge): 

Timetree of extant Galliformes including distribution data (see Distribution colour code)

 



Timetree of extant Phasianidae including distribution data (see Distribution colour code). 

 


HISTORICAL BIOGEOGRAPHY

Pan-Galliformes probably had their origins in the Northern Hemisphere (Crowe et al., 2006, Mayr & Weidig, 2004; Mayr, 2006, 2016; Ksepka, 2009; Tomek et al., 2014; Chen, 2015). 

 

References

Bai, W., J. Zhu, and Z.-M. Ren (2020), Complete mitochondrial genome of Chrysolophus pictus (Galliformes: Phasianidae), a national protected wild

pheasant, Mitochondrial DNA Part B 5(1), 1031-1033. DOI: 10.1080/23802359.2020.1722762. (pdf)

Bao, X.-K., N.F. Liu, J.-Y. Qu, X.-L. Wang, B. An, L.-Y. Wen, and S. Song (2010), The phylogenetic position and speciation dynamics of the genus Perdix

(Phasianidae, Galliformes), Mol. Phylogenet. Evol. 56, 840-847. DOI: 10.1016/j.ympev.2010.03.038. (abstract)

Birks, S.M., and S.V. Edwards (2002), A phylogeny of the megapodes (Aves: Meagpodiidae) based on nuclear and mitochondrial DNA sequences, Mol.

Phylogenet. Evol. 23(3), 408-421. DOI: 10.1016/S1055-7903(02)00002-7.
 (abstract)

Bonilla, A.J., E.L. Braun, and R.T. Kimball (2010), Comparative molecular evolution and phylogenetic utility of 3'-UTRs and introns in Galliformes, Mol.

Phylogenet. Evol. 56, 536-542. DOI: 10.1016/j.ympev.2010.04.006. (abstract)

 

Bowie, R.C.K., C. Cohen, and T.M. Crowe (2013), Ptilopachinae: a new subfamily of the Odontophoridae (Aves: Galliformes), Zootaxa 3670(1), 97-98. DOI:

10.11646/zootaxa.3670.1.11. (abstract) 

Cai, T., J. Fjeldsa, Y. Wu, S. Shao, Y. Shen, Q. Quan, X. Li, G. Song, Y. Qu, G. Qiao, and F. Lei (2018), What makes the Sino-Himalayan mountains the major

diversity hotspots for pheasants?, J. Biogeogr. 45(3), 640-651. DOI: 10.1111/jbi.13156. (abstract)

Chen, Y. (2014), On the historical biogeography of global Galliformes: ancestral range and diversification patterns, Avian Research 2014, 5:3, DOI:

10.1186/s40657-014-0003-9. (pdf)

Chen, D., Y. Liu, G.W.H. Davison, L. Dong, J. Chang, S. Gao, S.-H. Li, and Z. Zhang (2015), Revival of the genus Tropicoperdix Blyth 1859 (Phasianidae,

Aves) using multilocus sequence data, Zool. J. Linn. Soc. 175(2), 429-438. DOI: 10.1111/zoj.12273. (abstract)

Chen, D., E.L. Braun, M. Forthman, R.T. Kimball, and Z. Zhang (2018), A simple strategy for recovering ultraconserved elements, exons, and introns from

low coverage shotgun sequencing of museum specimens: Placement of the partridge genus Tropicoperdix within the galliformes, Mol. Phylogenet. Evol. 129, 304-314. DOI: 10.1016/j.ympev.2018.09.005. (abstract)

Cohen, C., J.L. Wakeling, T.G. Mandiwana-Neudani, E. Sande, C. Dranzoa, T.M. Crowe, and R.C.K. Bowie (2012), Phylogenetic affinities of evolutionary

enigmatic African Galliformes: the Stone Partridge Ptilopachus petrosus and Nahan's Francolin Francolinus nahani, and support for their sister relationship with New World quails, Ibis 154, 768-780. DOI: 10.1111/j.1474-919X.2012.01269.x. (abstract)

Cox, W.A., R.T. Kimball, and E.L. Braun (2007), Phylogenetic position of the New World quail (Odontophoridae): eight nuclear loci and three mitochondrial

regions contradict morphology and the Sibley-Ahlquist tapestry, Auk 124(1), 71-84. DOI: 10.1093/auk/124.1.71. (pdf)

Crowe, T.M., R.C.K. Bowie, P. Bloomer, T.G. Mandiwana, T.A.J. Hedderson, E. Randi, S.L. Pereira, and J. Wakeling (2006a), Phylogenetics, biogeography

and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data, Cladistics 22, 495-532. DOI: 10.111/j.1096-0031.2006.00120x. (abstract)

Crowe, T.M., P. Bloomer, E. Randi, V. Lucchini, R. Kimball, E. Braun, and J.G. Groth (2006b), Supra-generic cladistics of landfowl (Order Galliformes), Acta

Zool. Sinica 52, S358-361. (pdf)

Dimcheff, D.E., S.V. Drovetsky, and D.P. Mindell (2002), Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes, Mol.

Phylogenet. Evol. 24(2), 203-215. DOI:10.1016/S1055-7903(02)00230-0. (abstract)

Ding, L., J. Liao, and N. Lin (2019), The uplift of the Qinghai-Tibet Plateau and glacial oscillations triggered the diversification of Tetraogallus (Galliformes,

Phasianidae), Ecol. Evol. 2019. DOI: 10.1002/ece3.6008. (pdf)

Drovestki, S.V. (2002), Molecular phylogeny of grouse: individual and combined performance of W-linked, autosomal, and mitochondrial loci, Syst. Biol.

51(6), 930-945. DOI:10.1080/10635150290156033. (pdf)

Drovestki, S.V. (2003), Plio-Pleistcene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily, J. Biogeogr. 30(8), 1173-1181. DOI:

10.1046/j.1365-2699.2003.00920.x. (pdf)

Forcina, G., P. Panayides, M. Guerrini, F. Nardi, B.K. Gupta, E. Mori, O.F. Al-Sheikhli, J. Mansoori, I. Khaliq, D.N. Rank, B.M. Parasharya, A.A. Khan, P.

Hadjigerou, and F. Barbanera (2012), Molecular evolution of the Asian francolins (Francolinus, Galliformes): A modern reappraisal of a classic study in speciation, Mol. Phylogenet. Evol. 65, 523-534. DOI: 10.1016/j.ympev.2012.07.006. (abstract)

 

Frank-Hoeflich, K., L.F. Silveira, J. Estudillo-Lopez, A.M. Garcia-Koch, L. Ongay-Larios, and D. Pinero (2007), Increased taxon and character sampling

reveals novel intergeneric relationships in the Cracidae, J. Zool. Syst. Evol. Res. 45(3), 242-254. DOI: 10.1111/j.1439-0469.2007.00396.x. (abstract)

Gao, H., Z. Liu, Y. Sun, C. Zhao, J.Wang, and L. Teng (2019), The complete mitochondrial genome of Helan Mountain chukar Alectoris chukar potanini

(Galliformes: Phasianidae), Mitochondrial DNA Part B. 4(2), 2443-2444. DOI: 10.1080/23802359.2019.1637792. (pdf)

 

Grau, E.T., S.L. Pereira, L.F. Silveira, E. Höfling, and A. Wayntal (2005), Molecular phylogenetics and biogeography of Neotropical piping guans (Aves:

Galliformes): Pipile Bonaparte, 1856 is synonym of Aburria Reichenbach, 1853, Mol. Phylogenet. Evol. 35, 637-645. DOI: 10.1016/j.ympev.2004.12.004.
 (abstract) 

Gutierrez, R.J., G.F. Barrowclough, and J.G. Groth (2000), A classification of the grouse (Aves: Tetraoninae) based on mitochondrial DNA sequences, Wildl.

Biol. 6(4), 205-211. DOI: 10.2981/wlb.2000.017. (pdf)

Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K-L. Han, J. Harshman, C.J. Huddleston, B.D.

Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri (2008), A phylogenetic study of birds reveals their evolutionary history, Science 320, 1763-1767. (abstract)

Harris, R.B., S.M. Birks, and A.D. Leach (2014), Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes:

Megapodiidae), J. Biogeogr. 41, 2045-2056. DOI: 10.1111/jbi.12357. (pdf)

He, L., B. Dai, B. Zeng, X. Zhang, B. Chen, B. Yue, and J. Lee (2009), The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila

rufipectus) and a phylogenetic analysis with related species, Gene 435, 23-28. DOI: 10.1016/j.gene.2009.01.001. (abstract)

Hosner, P.A., E.L. Braun, and R.T. Kimball (2015), Land connectivity changes and global cooling shaped the colonization history and diversification of New

World quail (Aves: Galliformes: Odontophoridae). J. Biogeogr. 42(10), 1883-1895. DOI: 10.1111/jbi.12555. (abstract)

Hosner, P.A., B.C. Faircloth, Glenn, T.C., Braun, E.L., and R.T. Kimball (2016a), Avoiding missing data biases in phylogenomic inference: an empirical study

in the landfowl (Aves: Galliformes), Mol. Biol. Evol. doi: 10.1093/molbev/msv347. (abstract)

Hosner, P.A., E.L. Braun, and R.T. Kimball (2016b), Rapid and recent diversification of curassows, guans, and chachalacas (Galliformes: Cracidae) out of

Mesoamerica: Phylogeny inferred from mitochondrial, intron, and ultraconserved element sequences, Mol. Phylogenet. Evol. 102, 320-330. DOI: 10.1016/j.ympev.2016.06.006. (abstract)

Hosner, P.A., J.A. Tobias, E.L. Braun, and R.T. Kimball (2017), How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal

evolution in the landfowl (Aves: Galliformes), Proc. R. Soc. B. 284, 20170210. DOI: 10.1098/rspb.2017.0210. (pdf)

Jaiswal, S.K., A. Gupta, R. Saxena, V.P.K. Prasoodanan, A.K. Sharma, P. Mittal, A. Roy, A.B.A. Shafer, N.Vijay, and V.K. Sharma (2018), Genome sequence of

peacock reveals the peculiar case of a glittering bird, Front. Genet. 9, 392. DOI: 10.3389/fgene.2018.00392. (pdf)

Jetz, W., G.H. Thomas, J.B. Joy, K. Hartmann, and A.O. Mooers (2012), The global diversity of birds in time and space, Nature 491, 444-448. DOI:

10.1038/nature11631. (abstract)

Jiang, F., Y. Miao, W. Liang, H. Ye, H. Liu, and B. Liu (2010), The complete mitochondrial genomes of the whistling duck (Dendrocygna javanica) and black

swan (Cygnus atratus): dating evolutionary divergence in Galloanserae, Mol. Biol. Rep. 37, 3001-3015. DOI: 10.1007/s11033-009-9868-9. (abstract)

Jiang, L., G. Wang, R. Peng, Q. Peng, and F. Zou (2014), Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant (Lophura swinhoii), Gene 539,

21-29. DOI: 10.1016/j.gene.2014.01.067. (abstract)

Kaiser, V.B., M. van Tuinen, and H. Ellegren (2007), Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in

galliform birds, Mol. Biol. Evol. 24(1), 338-347. DOI: 10.1093/molbev/msl164. (pdf)

Kan, X.Z., J.K. Yang, X.F. Li, L. Chen, Z.P. Lei, M. Wang, C.J. Qian, H. Gao, and Z.Y. Yang (2010), Phylogeny of major lineages of galliform birds (Aves:

Galliformes) based on complete mitochondrial genomes, Genet. Mol. Res. 9(3), 1625-1633. DOI: 10.4238/vol9-3gmr898. (pdf)

Kimball, R.T., E.L. Braun, and J.D. Ligon (1997), Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and

evolutionary enigma. Proc. R. Soc. Lond. B 264, 1517-1523. DOI: 10.1098/rspb.1997.0210. (pdf)

Kimball, R.T., E.L. Braun, P.W. Zwartjes, T.M. Crowe, and J.D. Ligon (1999), A molecular phylogeny of the pheasants and partridges suggests that these

lineages are not monophyletic. Mol. Phylogenet. Evol. 11(1), 38-45. DOI: 10.1006/mpev.1998.0562.
 (abstract)

Kimball, R.T. and E.L. Braun (2008), A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits. J. Avian

Biol. 39, 438-445. DOI: 10.1111/j.2008.0908-8857.04270.x. (pdf)

Kimball, R.T., C.M. St. Mary, and E.L. Braun (2011), A macroevolutionary perspective on multiple sexual traits in the Phasianidae (Galliformes). Int. J. Evol.

Biol. 2011, 2011:423938. DOI: 10.4061/2011/423938. (pdf)

Kimball, R.T. and E.L. Braun (2014), Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete

data matrix. PeerJ 2:e361. DOI: 10.7717/peerj.361. (pdf)

Kozma, R., P. Rödin-Mörch, and J. Höglund (2017), Genomic regions of speciation and adaptation among three species of grouse. Sci. Rep. 9, 812. DOI:

10.1038/s41598-018-36880-5. (pdf)

Kriegs, J.O., A. Matzke, G. Churakov, A. Kuritzin, G. Mayr, J. Brosius, and J. Schmitz (2007), Waves of genomic hitchhikers shed light on the evolution of

gamebirds (Aves: Galliformes), BMC Evol. Biol. 7, 190. DOI: 10.1186/1471-2148-7-190. (pdf)

Ksepka, D.T. (2009), Broken gears in the avian molecular clock: new phylogenetic analyses support stem galliform status for Gallinuloides wyomingensis and

rallid affinities for Amitabha urbsinterdictensis, Cladistics 25, 173-197. DOI: 10.1111/j.1096-0031.2009.00250.x. (abstract)

Kumar, S., G. Stecher, M. Suleski, and S.B. Hedges (2017), TimeTree: a resource for timelines, timetrees, and divergence times, Mol. Biol. Evol. 34(7), 1812-

1819. DOI:10.1093/molbev/msx116. (pdf) (link)

Lee C.-Y., P.-H. Hsieh, L.-M. Chiang, A. Chattopadhyay, K.-Y. Li, Y.-F. Lee, T.-P. Lu, L.-C. Lai, E.-C. Lin, H. Lee, S.-T. Ding, M.-H. Tsai, C.-Y. Chen, and E-Y.

Chuang (2018), Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant, GigaScience 7(5), 1-14. DOI: 10.1093/gigascience/giy044. (pdf)

Li, X., Y. Huang, and F. Lei (2015), Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae,

Galliformes), BMC Genomics 16(1), 42. DOI: 10.1186/s12864-015-1234-9. (pdf)

Liu, Z., L. He, H. Yuan, B. Yue, and J. Li (2012), CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes), Gene

502, 125-132. DOI: 10.1016/j.gene.2012.04.068. (abstract)

Lucchini, V., J. Höglund, S. Klaus, J. Swenson, and E. Randi (2001), Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan.

Mol. Phylogenet. Evol. 20(1), 149-162. DOI: 10.1006/mpev.2001.0943. (abstract)

Mandiwana-Neudani, T.G., R.C.K. Bowie, M. Hausberger, L. Henry and T.M. Crowe (2014), Taxonomic and phylogenetic utlity of variation in advertising

calls of francolins and spurfowls (Galliformes: Phasianidae). African Zool. 49(1), 54-82. DOI: 10.3377/004.049.0110. (abstract)

Mandiwana-Neudani, T.G., R.M. Little, T.M. Crowe, and R.C.K. Bowie (2019a), Taxonomy, phylogeny and biogeography of African spurfowls Gallifomes,

Phasianidae, Phasianinae, Coturnicini: Pternistis spp. Ostrich. 90(2), 145-172. DOI: 10.2989/00306525.2019.1584925. (abstract)

Mandiwana-Neudani, T.G., R.M. Little, T.M. Crowe, and R.C.K. Bowie (2019b), Taxonomy, phylogeny and biogeography of 'true' francolins: Gallifomes,

Phasianidae, Phasianinae, Gallini; Francolinus, Ortygornis, Afrocolinus gen. nov., Peliperdix and Scleroptila spp. Ostrich. 90(3): 191-221. DOI: 10.2989/00306525.2019.1632954. (abstract)

Mayr, G. (2006), New specimens of the early Eocene stem group galliform Paraortygoides (Gallinuloididae), with comments on the evolution of a  crop in

the stem lineage of Galliformes, J. Ornithol. 147, 31-37. DOI: 10.1007/s10336-005-0006-8. (abstract)

Mayr, G. (2016), "Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance", Chapter 7, Wiley-Blackwell. (link)

 

Mayr, G. and I. Weidig (2004), The Early Eocene bird Gallinuloides wyomingensis - a stem group representative of Galliformes, Acta Palaeontol. Pol. 49(2),

211-217. (pdf)

Meiklejohn, K.A., M.J. Danielson, B.C. Faircloth, T.C. Glenn, E.L. Braun, and R.T. Kimball (2014), Incongruence among different mitochondrial regions: A

case study using complete mitogenomes. Mol. Phylogenet. Evol. 78: 314-323. DOI: 10.1016/j.ympev.2014.06.003. 
(abstract)

Pereira, S.L., A.J. Baker, and A. Wajntal (2002), Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae

(Galliformes, Aves), Syst. Biol.. 51(6), 946-958. DOI: 10.1080/10635150290102519. (pdf)

Pereira, S.L., and A.J. Baker (2004), Vicariant speciation of curassows (Aves, Cracidae): a hypothesis based on mitochondrial DNA phylogeny, Auk 123(3),

682-694. DOI: 10.1093/auk/121.3.682. (pdf)

Pereira, S.L., and A.J. Baker (2006), A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of NDA

substitutions across lineages and sites, Mol. Phylogenet. Evol. 38, 499-509. DOI: 10.1016/j.ympev.2005.07.007. (abstract)

Pereira, S.L., and A.J. Baker (2009), Waterfowl and gamefowl (Galloanserae), in "Timetree of Life", (Hedges, S.B., and S. Kumar, eds.), Oxford University

Press, pp. 415-418(pdf)

Pereira, S.L., A.J. Baker, and A. Wajntal (2009), Did increased taxon and character sampling really reveal novel intergeneric relationships in the Cracidae

(Aves: Galliformes)?, J. Zool. Syst. Evol. Res. 47(1), 103-104. DOI: 10.1111/j.1439-0469.2008.00512.x. (abstract)

Persons, N.W., P.A. Hosner, K.A. Meiklejohn, E.L. Braun, and R.T. Kimball (2016), Sorting out relationships among the grouse and ptarmigan using intron,

mitochondrial, and ultra-conserved element sequences, Mol. Phylogenet. Evol. 98, 123-132. DOI: 10.1016/j.ympev.2016.02.003. (abstract)

Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon and A.R. Lemmon (2015), A comprehensive phylogeny of birds (Aves) using

targeted next-generation DNA sequencing, Nature 526, 569-573. DOI: 10.1038/nature15697. (abstract)

Randi, E., V. Lucchini, T. Armijo-Prewitt, R.T. Kimball, E.L. Braun, and J.D. Ligon (2000), Mitochondrial DNA phylogeny and speciation in the tragopans,

Auk 117(4), 1003-1015. DOI: 10.1093/auk/117.4.1003. (pdf)

Seabrook-Davison, M., L. Huynen, D.M. Lambert, and D.H. Brunton (2009), Ancient DNA resolves identitiy and phylogeny of New Zealand´s extinct and

living quail, PLoS ONE 4(7), e6400. DOI:10.1371/journal.pone.0006400. (pdf)

Shen, Y.-Y., L. Liang, Y.-B. Sun, B.-S. Yue, X.-J. Yang, R.W. Murphy, and Y.-P. Zhang (2010), A mitogenomic perspective on the ancient, rapid radiation in the

Galliformes with an emphasis on the Phasianidae, BMC Evol. Biol. 10:132,. DOI: 10.1186/1471-2148-10-132. (pdf)

Shen, Y.-Y., K. Dai, X. Cao, R.W. Murphy, X.-J. Shen, and Y.-P. Zhang (2014), The updated phylogenies of the Phasianidae based on combined data of nuclear

and mitochondria DNA, PLoS ONE 9(4), e95786. DOI: 10.1371/journal.pone.0095786. (pdf)

Stein, R.W., J.W. Brown, and G. Mayr (2015), A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within

the order Galliformes (Aves), Mol. Phylogent. Evol. 92, 155-164. DOI: 10.1016/j.ympev.2015.06.005.
 (abstract)

Sun, K. K.A. Meiklejohn, B.C. Faircloth, T.C. Glenn, E.L. Braun, and R.T. Kimball (2014), The evolution of peafowl and other taxa with ocelli (eyespots): a

phylogenomic approach, Proc. Roy. Soc. B 281, 20140823–20140823. DOI: 10.1098/rspb.2014.0823. (pdf)

Sveinsdottir, M., and K.P. Magnusson (2014), Complete mitochondrial genome and phylogenetic analysis of willow ptarmigan (Lagopus lagopus) and rock

ptarmigan (Lagopus muta) (Galliformes: Phasianidae: Tetraoninae), Mitochondrial DNA Part B 2(2), 400-402. DOI: 10.1080/23802359.2017.1347834. (pdf)

Tomek, T., Z.M. Bochenski, K. Wertz, and E. Swidnicka  (2014), A new genus and species of a galliform bird from the Oligocene of Poland. Palaeontol.

Electronica 17(3), 38A. DOI: 10.26879/474. (pdf)

Wang, N., R.T. Kimball, E.L. Braun, B. Liang, and Z. Zhang (2013), Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with

extended taxon sampling, PLoS ONE 8(5): e64312. DOI: 10.1371/journal.pone.0064312. (pdf)

Wang, N., R.T. Kimball, E.L. Braun, B. Liang, and Z. Zhang (2017a), Ancestral range reconstruction of Galliformes: the effects of topology and taxon

sampling in Phasianidae, J. Biogeogr. 44(1), 122-135. DOI: 10.1111/jbi.12782. (abstract)

Wang, N., P.A. Hosner, B. Liang, E.L. Braun, Liang, B., and R.T. Kimball (2017b), Historical relationships of three enigmatic phasianid genera (Aves:

Galliformes) inferred using phylogenomic and mitogenomic data, Mol. Phylogenet. Evol. 109, 217-225. DOI: 10.1016/j.ympev.2017.01.006. (abstract)

Wang, P., Y. Liu, Y. Liu, Y. Chang, N. Wang, and Z. Zhang (2017c), The role of niche divergence and geographic arrangement in the speciation of Eared

Pheasants (Crossoptilon, Hodgson 1938), Mol. Phylogenet. Evol. 113, 1-8. DOI: 10.1016/j.ympev.2017.05.003. (abstract)

 

Williford, D., R.W. DeYoung, and L.A. Brennan (2017), Molecular ecology of New World Quails: messages for managers, National Quail Symposium

Proceedings 8, article 20. (pdf)

Yan, C., B. Mou, Y. Meng, F. Tu, Z. Fan, M. Price, B. Yue, and X. Zhang (2017), A novel mitochondrial genome of Arborophila and new insight into

Arborophila evolutionary history, PLoS ONE 12(7), e0181649. DOI: 10.1371/journal.pone.0181649. (pdf)

Zhao, S., Y. Ma, G. Wang, H. Li, X. Liu, J. Yu, B. Yue, and F. Zou (2012), Molecular phylogeny of major lineages of the avian family Phasianidae inferred from

complete mitochondrial genome sequences, J. Nat. Hist. 46(11/12), 757-767. DOI: 10.1080/00222933.2011.653588. (abstract)

Zhan, X.-J., and Z.-W. Zhang (2005), Molecular phylogeny of avian genus Syrmaticus based on the mitochondrial cytochrome b gene and control region,

Zool. Sci. 22(4), 427-435. DOI: 10.2108/zsj.22.427. (abstract)

Zhou, C., S. Zheng, X. Jiang, W. Liang, M. Price, Z. Fan, Y. Meng, and B. Yue (2018), First complete genome sequence in Arborophila and comparative

genomics reveals the evolutionary adaptation of Hainan Partridge (Arborophila ardens), Avian Res. 9, 45. DOI: 10.1186/s40657-018-0136-3. (pdf)

 

Indian Peafowl or Blue Peafowl (Pavo cristatus), (Foto: Carolin Pfeiffer)

Indian Peafowl (Pavo cristatus), male, Phasianidae

 

Crested Partridge (Rollulus rouloul), male, Phasianidae (Foto: Carolin Pfeiffer)

Helmeted Guineafowl (Numida meleagris), immature (Foto: Carolin Pfeiffer)

 Indian Peafowl or Blue Peafowl (Pavo cristatus), (Foto: Carolin Pfeiffer)

Crested Guineafowl (Guttera pucherani), left, & Vulturine Guineafowl (Acryllium vulturinum), right

Vulturine Guineafowl (Acryllium vulturinum), (Foto: Mary Yalda)

Vulturine Guineafowl (Acryllium vulturinum), (Foto: Mary Yalda)

Vulturine Guineafowl (Acryllium vulturinum), (Foto: MaryYalda)

Golden Pheasant (Chrysolophus pictus), male, Phasianidae (Foto: Carolin Pfeiffer)