Galliformes

This order comprises the following families:

  • Megapodiidae (megapodes)
  • Cracidae (chachalacas, guans, curassows, Horned Guan)
  • Numididae (guineafowl)
  • Odontophoridae (New World quails, African stone partridges)
  • Phasianidae (turkeys, grouse, pheasants, partridges)

DATED PHYLOGENY

Dated phylogenies, in which branchlengths are proportional to time, are usually referred to as chronograms or less often timetrees. The dated genus-level phylogenetic relationships among extant Galliformes are shown below (click to enlarge): 

Timetree of extant Galliformes including distribution data (see Distribution colour code)

 



Timetree of extant Phasianidae including distribution data (see Distribution colour code). 

 


HISTORICAL BIOGEOGRAPHY

Pan-Galliformes probably had their origins in the Northern Hemisphere (Crowe et al., 2006, Mayr & Weidig, 2004; Mayr, 2006, 2016; Ksepka, 2009; Tomek et al., 2014; Chen, 2015). 

 

References

Bai, W., J. Zhu, and Z.-M. Ren (2020), Complete mitochondrial genome of Chrysolophus pictus (Galliformes: Phasianidae), a national protected wild

pheasant, Mitochondrial DNA Part B 5(1), 1031-1033. DOI: 10.1080/23802359.2020.1722762. (pdf)

Bao, X.-K., N.F. Liu, J.-Y. Qu, X.-L. Wang, B. An, L.-Y. Wen, and S. Song (2010), The phylogenetic position and speciation dynamics of the genus Perdix

(Phasianidae, Galliformes), Mol. Phylogenet. Evol. 56, 840-847. DOI: 10.1016/j.ympev.2010.03.038. (abstract)

Birks, S.M., and S.V. Edwards (2002), A phylogeny of the megapodes (Aves: Meagpodiidae) based on nuclear and mitochondrial DNA sequences, Mol.

Phylogenet. Evol. 23(3), 408-421. DOI: 10.1016/S1055-7903(02)00002-7.
 (abstract)

Bonilla, A.J., E.L. Braun, and R.T. Kimball (2010), Comparative molecular evolution and phylogenetic utility of 3'-UTRs and introns in Galliformes, Mol.

Phylogenet. Evol. 56, 536-542. DOI: 10.1016/j.ympev.2010.04.006. (abstract)

 

Bowie, R.C.K., C. Cohen, and T.M. Crowe (2013), Ptilopachinae: a new subfamily of the Odontophoridae (Aves: Galliformes), Zootaxa 3670(1), 97-98. DOI:

10.11646/zootaxa.3670.1.11. (abstract) 

Cai, T., J. Fjeldsa, Y. Wu, S. Shao, Y. Shen, Q. Quan, X. Li, G. Song, Y. Qu, G. Qiao, and F. Lei (2017), What makes the Sino-Himalayan mountains the major

diversity hotspots for pheasants?, J. Biogeogr. 45(3), 640-651. DOI: 10.1111/jbi.13156. (abstract)

Chen, Y. (2014), On the historical biogeography of global Galliformes: ancestral range and diversification patterns, Avian Research 2014, 5:3, DOI:

10.1186/s40657-014-0003-9. (pdf)

Chen, D., Y. Liu, G.W.H. Davison, L. Dong, J. Chang, S. Gao, S.-H. Li, and Z. Zhang (2015), Revival of the genus Tropicoperdix Blyth 1859 (Phasianidae,

Aves) using multilocus sequence data, Zool. J. Linn. Soc. 175(2), 429-438. DOI: 10.1111/zoj.12273. (abstract)

Chen, D., E.L. Braun, M. Forthman, R.T. Kimball, and Z. Zhang (2018), A simple strategy for recovering ultraconserved elements, exons, and introns from

low coverage shotgun sequencing of museum specimens: placement of the partridge genus Tropicoperdix within the galliformes, Mol. Phylogenet. Evol. 129, 304-314. DOI: 10.1016/j.ympev.2018.09.005. (abstract)

Cohen, C., J.L. Wakeling, T.G. Mandiwana-Neudani, E. Sande, C. Dranzoa, T.M. Crowe, and R.C.K. Bowie (2012), Phylogenetic affinities of evolutionary

enigmatic African Galliformes: the Stone Partridge Ptilopachus petrosus and Nahan's Francolin Francolinus nahani, and support for their sister relationship with New World quails, Ibis 154, 768-780. DOI: 10.1111/j.1474-919X.2012.01269.x. (abstract)

Cox, W.A., R.T. Kimball, and E.L. Braun (2007), Phylogenetic position of the New World quail (Odontophoridae): eight nuclear loci and three mitochondrial

regions contradict morphology and the Sibley-Ahlquist tapestry, Auk 124(1), 71-84. DOI: 10.1093/auk/124.1.71. (pdf)

Crowe, T.M., R.C.K. Bowie, P. Bloomer, T.G. Mandiwana, T.A.J. Hedderson, E. Randi, S.L. Pereira, and J. Wakeling (2006a), Phylogenetics, biogeography

and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data, Cladistics 22, 495-532. DOI: 10.111/j.1096-0031.2006.00120x. (abstract)

Crowe, T.M., P. Bloomer, E. Randi, V. Lucchini, R. Kimball, E. Braun, and J.G. Groth (2006b), Supra-generic cladistics of landfowl (Order Galliformes), Acta

Zool. Sinica 52, S358-361. (pdf)

Dimcheff, D.E., S.V. Drovetsky, and D.P. Mindell (2002), Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes, Mol.

Phylogenet. Evol. 24(2), 203-215. DOI:10.1016/S1055-7903(02)00230-0. (abstract)

Ding, L., J. Liao, and N. Lin (2019), The uplift of the Qinghai-Tibet Plateau and glacial oscillations triggered the diversification of Tetraogallus (Galliformes,

Phasianidae), Ecol. Evol. 2019. DOI: 10.1002/ece3.6008. (pdf)

Drovestki, S.V. (2002), Molecular phylogeny of grouse: individual and combined performance of W-linked, autosomal, and mitochondrial loci, Syst. Biol.

51(6), 930-945. DOI:10.1080/10635150290156033. (pdf)

Drovestki, S.V. (2003), Plio-Pleistcene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily, J. Biogeogr. 30(8), 1173-1181. DOI:

10.1046/j.1365-2699.2003.00920.x. (pdf)

Forcina, G., P. Panayides, M. Guerrini, F. Nardi, B.K. Gupta, E. Mori, O.F. Al-Sheikhli, J. Mansoori, I. Khaliq, D.N. Rank, B.M. Parasharya, A.A. Khan, P.

Hadjigerou, and F. Barbanera (2012), Molecular evolution of the Asian francolins (Francolinus, Galliformes): A modern reappraisal of a classic study in speciation, Mol. Phylogenet. Evol. 65, 523-534. DOI: 10.1016/j.ympev.2012.07.006. (abstract)

 

Frank-Hoeflich, K., L.F. Silveira, J. Estudillo-Lopez, A.M. Garcia-Koch, L. Ongay-Larios, and D. Pinero (2007), Increased taxon and character sampling

reveals novel intergeneric relationships in the Cracidae, J. Zool. Syst. Evol. Res. 45(3), 242-254. DOI: 10.1111/j.1439-0469.2007.00396.x. (abstract)

Gao, H., Z. Liu, Y. Sun, C. Zhao, J.Wang, and L. Teng (2019), The complete mitochondrial genome of Helan Mountain chukar Alectoris chukar potanini

(Galliformes: Phasianidae), Mitochondrial DNA Part B. 4(2), 2443-2444. DOI: 10.1080/23802359.2019.1637792. (pdf)

Grau, E.T., S.L. Pereira, L.F. Silveira, E. Höfling, and A. Wayntal (2005), Molecular phylogenetics and biogeography of Neotropical piping guans (Aves:

Galliformes): Pipile Bonaparte, 1856 is synonym of Aburria Reichenbach, 1853, Mol. Phylogenet. Evol. 35, 637-645. DOI: 10.1016/j.ympev.2004.12.004.
 (abstract) 

Gutierrez, R.J., G.F. Barrowclough, and J.G. Groth (2000), A classification of the grouse (Aves: Tetraoninae) based on mitochondrial DNA sequences, Wildl.

Biol. 6(4), 205-211. DOI: 10.2981/wlb.2000.017. (pdf)

Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K-L. Han, J. Harshman, C.J. Huddleston, B.D.

Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri (2008), A phylogenetic study of birds reveals their evolutionary history, Science 320, 1763-1767. (abstract)

Harris, R.B., S.M. Birks, and A.D. Leach (2014), Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes:

Megapodiidae), J. Biogeogr. 41, 2045-2056. DOI: 10.1111/jbi.12357. (pdf)

He, L., B. Dai, B. Zeng, X. Zhang, B. Chen, B. Yue, and J. Lee (2009), The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila

rufipectus) and a phylogenetic analysis with related species, Gene 435, 23-28. DOI: 10.1016/j.gene.2009.01.001. (abstract)

Hosner, P.A., E.L. Braun, and R.T. Kimball (2015), Land connectivity changes and global cooling shaped the colonization history and diversification of New

World quail (Aves: Galliformes: Odontophoridae). J. Biogeogr. 42(10), 1883-1895. DOI: 10.1111/jbi.12555. (abstract)

Hosner, P.A., B.C. Faircloth, Glenn, T.C., Braun, E.L., and R.T. Kimball (2016a), Avoiding missing data biases in phylogenomic inference: an empirical study

in the landfowl (Aves: Galliformes), Mol. Biol. Evol. doi: 10.1093/molbev/msv347. (abstract)

Hosner, P.A., E.L. Braun, and R.T. Kimball (2016b), Rapid and recent diversification of curassows, guans, and chachalacas (Galliformes: Cracidae) out of

Mesoamerica: Phylogeny inferred from mitochondrial, intron, and ultraconserved element sequences, Mol. Phylogenet. Evol. 102, 320-330. DOI: 10.1016/j.ympev.2016.06.006. (abstract)

Hosner, P.A., J.A. Tobias, E.L. Braun, and R.T. Kimball (2017), How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal

evolution in the landfowl (Aves: Galliformes), Proc. R. Soc. B. 284, 20170210. DOI: 10.1098/rspb.2017.0210. (pdf)

Jaiswal, S.K., A. Gupta, R. Saxena, V.P.K. Prasoodanan, A.K. Sharma, P. Mittal, A. Roy, A.B.A. Shafer, N.Vijay, and V.K. Sharma (2018), Genome sequence of

peacock reveals the peculiar case of a glittering bird, Front. Genet. 9, 392. DOI: 10.3389/fgene.2018.00392. (pdf)

Jetz, W., G.H. Thomas, J.B. Joy, K. Hartmann, and A.O. Mooers (2012), The global diversity of birds in time and space, Nature 491, 444-448. DOI:

10.1038/nature11631. (abstract)

Jiang, F., Y. Miao, W. Liang, H. Ye, H. Liu, and B. Liu (2010), The complete mitochondrial genomes of the whistling duck (Dendrocygna javanica) and black

swan (Cygnus atratus): dating evolutionary divergence in Galloanserae, Mol. Biol. Rep. 37, 3001-3015. DOI: 10.1007/s11033-009-9868-9. (abstract)

Jiang, L., G. Wang, R. Peng, Q. Peng, and F. Zou (2014), Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant (Lophura swinhoii), Gene 539,

21-29. DOI: 10.1016/j.gene.2014.01.067. (abstract)

Kaiser, V.B., M. van Tuinen, and H. Ellegren (2007), Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in

galliform birds, Mol. Biol. Evol. 24(1), 338-347. DOI: 10.1093/molbev/msl164. (pdf)

Kan, X.Z., J.K. Yang, X.F. Li, L. Chen, Z.P. Lei, M. Wang, C.J. Qian, H. Gao, and Z.Y. Yang (2010), Phylogeny of major lineages of galliform birds (Aves:

Galliformes) based on complete mitochondrial genomes, Genet. Mol. Res. 9(3), 1625-1633. DOI: 10.4238/vol9-3gmr898. (pdf)

Kimball, R.T., E.L. Braun, and J.D. Ligon (1997), Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and

evolutionary enigma. Proc. R. Soc. Lond. B 264, 1517-1523. DOI: 10.1098/rspb.1997.0210. (pdf)

Kimball, R.T., E.L. Braun, P.W. Zwartjes, T.M. Crowe, and J.D. Ligon (1999), A molecular phylogeny of the pheasants and partridges suggests that these

lineages are not monophyletic. Mol. Phylogenet. Evol. 11(1), 38-45. DOI: 10.1006/mpev.1998.0562.
 (abstract)

Kimball, R.T. and E.L. Braun (2008), A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits. J. Avian

Biol. 39, 438-445. DOI: 10.1111/j.2008.0908-8857.04270.x. (pdf)

Kimball, R.T., C.M. St. Mary, and E.L. Braun (2011), A macroevolutionary perspective on multiple sexual traits in the Phasianidae (Galliformes). Int. J. Evol.

Biol. 2011, 2011:423938. DOI: 10.4061/2011/423938. (pdf)

Kimball, R.T. and E.L. Braun (2014), Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete

data matrix. PeerJ 2:e361. DOI: 10.7717/peerj.361. (pdf)

Kozma, R., P. Rödin-Mörch, and J. Höglund (2017), Genomic regions of speciation and adaptation among three species of grouse. Sci. Rep. 9, 812. DOI:

10.1038/s41598-018-36880-5. (pdf)

Kriegs, J.O., A. Matzke, G. Churakov, A. Kuritzin, G. Mayr, J. Brosius, and J. Schmitz (2007), Waves of genomic hitchhikers shed light on the evolution of

gamebirds (Aves: Galliformes), BMC Evol. Biol. 7, 190. DOI: 10.1186/1471-2148-7-190. (pdf)

Ksepka, D.T. (2009), Broken gears in the avian molecular clock: new phylogenetic analyses support stem galliform status for Gallinuloides wyomingensis and

rallid affinities for Amitabha urbsinterdictensis, Cladistics 25, 173-197. DOI: 10.1111/j.1096-0031.2009.00250.x. (abstract)

Kumar, S., G. Stecher, M. Suleski, and S.B. Hedges (2017), TimeTree: a resource for timelines, timetrees, and divergence times, Mol. Biol. Evol. 34(7), 1812-

1819. DOI:10.1093/molbev/msx116. (pdf) (link)

Lee C.-Y., P.-H. Hsieh, L.-M. Chiang, A. Chattopadhyay, K.-Y. Li, Y.-F. Lee, T.-P. Lu, L.-C. Lai, E.-C. Lin, H. Lee, S.-T. Ding, M.-H. Tsai, C.-Y. Chen, and E-Y.

Chuang (2018), Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant, GigaScience 7(5), 1-14. DOI: 10.1093/gigascience/giy044. (pdf)

Li, X., Y. Huang, and F. Lei (2015), Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae,

Galliformes), BMC Genomics 16(1), 42. DOI: 10.1186/s12864-015-1234-9. (pdf)

Liu, Z., L. He, H. Yuan, B. Yue, and J. Li (2012), CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes), Gene

502, 125-132. DOI: 10.1016/j.gene.2012.04.068. (abstract)

Lucchini, V., J. Höglund, S. Klaus, J. Swenson, and E. Randi (2001), Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan.

Mol. Phylogenet. Evol. 20(1), 149-162. DOI: 10.1006/mpev.2001.0943. (abstract)

Mandiwana-Neudani, T.G., R.C.K. Bowie, M. Hausberger, L. Henry and T.M. Crowe (2014), Taxonomic and phylogenetic utlity of variation in advertising

calls of francolins and spurfowls (Galliformes: Phasianidae). African Zool. 49(1), 54-82. DOI: 10.3377/004.049.0110. (abstract)

Mandiwana-Neudani, T.G., R.M. Little, T.M. Crowe, and R.C.K. Bowie (2019a), Taxonomy, phylogeny and biogeography of African spurfowls Gallifomes,

Phasianidae, Phasianinae, Coturnicini: Pternistis spp. Ostrich. 90(2), 145-172. DOI: 10.2989/00306525.2019.1584925. (abstract)

Mandiwana-Neudani, T.G., R.M. Little, T.M. Crowe, and R.C.K. Bowie (2019b), Taxonomy, phylogeny and biogeography of 'true' francolins: Gallifomes,

Phasianidae, Phasianinae, Gallini; Francolinus, Ortygornis, Afrocolinus gen. nov., Peliperdix and Scleroptila spp. Ostrich. 90(3): 191-221. DOI: 10.2989/00306525.2019.1632954. (abstract)

Mayr, G. (2006), New specimens of the early Eocene stem group galliform Paraortygoides (Gallinuloididae), with comments on the evolution of a  crop in

the stem lineage of Galliformes, J. Ornithol. 147, 31-37. DOI: 10.1007/s10336-005-0006-8. (abstract)

Mayr, G. (2016), "Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance", Chapter 7, Wiley-Blackwell. (link)

 

Mayr, G. and I. Weidig (2004), The Early Eocene bird Gallinuloides wyomingensis - a stem group representative of Galliformes, Acta Palaeontol. Pol. 49(2),

211-217. (pdf)

Meiklejohn, K.A., M.J. Danielson, B.C. Faircloth, T.C. Glenn, E.L. Braun, and R.T. Kimball (2014), Incongruence among different mitochondrial regions: A

case study using complete mitogenomes. Mol. Phylogenet. Evol. 78: 314-323. DOI: 10.1016/j.ympev.2014.06.003. 
(abstract)

Pereira, S.L., A.J. Baker, and A. Wajntal (2002), Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae

(Galliformes, Aves), Syst. Biol.. 51(6), 946-958. DOI: 10.1080/10635150290102519. (pdf)

Pereira, S.L., and A.J. Baker (2004), Vicariant speciation of curassows (Aves, Cracidae): a hypothesis based on mitochondrial DNA phylogeny, Auk 123(3),

682-694. DOI: 10.1093/auk/121.3.682. (pdf)

Pereira, S.L., and A.J. Baker (2006), A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of NDA

substitutions across lineages and sites, Mol. Phylogenet. Evol. 38, 499-509. DOI: 10.1016/j.ympev.2005.07.007. (abstract)

Pereira, S.L., and A.J. Baker (2009), Waterfowl and gamefowl (Galloanserae), in "Timetree of Life", (Hedges, S.B., and S. Kumar, eds.), Oxford University

Press, pp. 415-418(pdf)

Pereira, S.L., A.J. Baker, and A. Wajntal (2009), Did increased taxon and character sampling really reveal novel intergeneric relationships in the Cracidae

(Aves: Galliformes)?, J. Zool. Syst. Evol. Res. 47(1), 103-104. DOI: 10.1111/j.1439-0469.2008.00512.x. (abstract)

Persons, N.W., P.A. Hosner, K.A. Meiklejohn, E.L. Braun, and R.T. Kimball (2016), Sorting out relationships among the grouse and ptarmigan using intron,

mitochondrial, and ultra-conserved element sequences, Mol. Phylogenet. Evol. 98, 123-132. DOI: 10.1016/j.ympev.2016.02.003. (abstract)

Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon and A.R. Lemmon (2015), A comprehensive phylogeny of birds (Aves) using

targeted next-generation DNA sequencing, Nature 526, 569-573. DOI: 10.1038/nature15697. (abstract)

Randi, E., V. Lucchini, T. Armijo-Prewitt, R.T. Kimball, E.L. Braun, and J.D. Ligon (2000), Mitochondrial DNA phylogeny and speciation in the tragopans,

Auk 117(4), 1003-1015. DOI: 10.1093/auk/117.4.1003. (pdf)

Seabrook-Davison, M., L. Huynen, D.M. Lambert, and D.H. Brunton (2009), Ancient DNA resolves identitiy and phylogeny of New Zealand´s extinct and

living quail, PLoS ONE 4(7), e6400. DOI:10.1371/journal.pone.0006400. (pdf)

Shen, Y.-Y., L. Liang, Y.-B. Sun, B.-S. Yue, X.-J. Yang, R.W. Murphy, and Y.-P. Zhang (2010), A mitogenomic perspective on the ancient, rapid radiation in the

Galliformes with an emphasis on the Phasianidae, BMC Evol. Biol. 10:132,. DOI: 10.1186/1471-2148-10-132. (pdf)

Shen, Y.-Y., K. Dai, X. Cao, R.W. Murphy, X.-J. Shen, and Y.-P. Zhang (2014), The updated phylogenies of the Phasianidae based on combined data of nuclear

and mitochondria DNA, PLoS ONE 9(4), e95786. DOI: 10.1371/journal.pone.0095786. (pdf)

Stein, R.W., J.W. Brown, and G. Mayr (2015), A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within

the order Galliformes (Aves), Mol. Phylogent. Evol. 92, 155-164. DOI: 10.1016/j.ympev.2015.06.005.
 (abstract)

Sun, K. K.A. Meiklejohn, B.C. Faircloth, T.C. Glenn, E.L. Braun, and R.T. Kimball (2014), The evolution of peafowl and other taxa with ocelli (eyespots): a

phylogenomic approach, Proc. Roy. Soc. B 281, 20140823–20140823. DOI: 10.1098/rspb.2014.0823. (pdf)

Sveinsdottir, M., and K.P. Magnusson (2014), Complete mitochondrial genome and phylogenetic analysis of willow ptarmigan (Lagopus lagopus) and rock

ptarmigan (Lagopus muta) (Galliformes: Phasianidae: Tetraoninae), Mitochondrial DNA Part B 2(2), 400-402. DOI: 10.1080/23802359.2017.1347834. (pdf)

Tiley, G.P., A. Pandey, R.T. Kimball, E.L. Braun, and J.G. Burleigh  (2020), Whole genome phylogeny of Gallus: introgression and data-type effects. Avian

Res. 11(7). DOI: 10.1186/s40657-020-00194-w. (pdf)

Tomek, T., Z.M. Bochenski, K. Wertz, and E. Swidnicka  (2014), A new genus and species of a galliform bird from the Oligocene of Poland. Palaeontol.

Electronica 17(3), 38A. DOI: 10.26879/474. (pdf)

Wang, N., R.T. Kimball, E.L. Braun, B. Liang, and Z. Zhang (2013), Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with

extended taxon sampling, PLoS ONE 8(5): e64312. DOI: 10.1371/journal.pone.0064312. (pdf)

Wang, N., R.T. Kimball, E.L. Braun, B. Liang, and Z. Zhang (2017a), Ancestral range reconstruction of Galliformes: the effects of topology and taxon

sampling in Phasianidae, J. Biogeogr. 44(1), 122-135. DOI: 10.1111/jbi.12782. (abstract)

Wang, N., P.A. Hosner, B. Liang, E.L. Braun, Liang, B., and R.T. Kimball (2017b), Historical relationships of three enigmatic phasianid genera (Aves:

Galliformes) inferred using phylogenomic and mitogenomic data, Mol. Phylogenet. Evol. 109, 217-225. DOI: 10.1016/j.ympev.2017.01.006. (abstract)

Wang, P., Y. Liu, Y. Liu, Y. Chang, N. Wang, and Z. Zhang (2017c), The role of niche divergence and geographic arrangement in the speciation of Eared

Pheasants (Crossoptilon, Hodgson 1938), Mol. Phylogenet. Evol. 113, 1-8. DOI: 10.1016/j.ympev.2017.05.003. (abstract)

 

Williford, D., R.W. DeYoung, and L.A. Brennan (2017), Molecular ecology of New World Quails: messages for managers, National Quail Symposium

Proceedings 8, article 20. (pdf)

Yan, C., B. Mou, Y. Meng, F. Tu, Z. Fan, M. Price, B. Yue, and X. Zhang (2017), A novel mitochondrial genome of Arborophila and new insight into

Arborophila evolutionary history, PLoS ONE 12(7), e0181649. DOI: 10.1371/journal.pone.0181649. (pdf)

Zhao, S., Y. Ma, G. Wang, H. Li, X. Liu, J. Yu, B. Yue, and F. Zou (2012), Molecular phylogeny of major lineages of the avian family Phasianidae inferred from

complete mitochondrial genome sequences, J. Nat. Hist. 46(11/12), 757-767. DOI: 10.1080/00222933.2011.653588. (abstract)

Zhan, X.-J., and Z.-W. Zhang (2005), Molecular phylogeny of avian genus Syrmaticus based on the mitochondrial cytochrome b gene and control region,

Zool. Sci. 22(4), 427-435. DOI: 10.2108/zsj.22.427. (abstract)

Zhou, C., S. Zheng, X. Jiang, W. Liang, M. Price, Z. Fan, Y. Meng, and B. Yue (2018), First complete genome sequence in Arborophila and comparative

genomics reveals the evolutionary adaptation of Hainan Partridge (Arborophila ardens), Avian Res. 9, 45. (pdf)

 

Indian Peafowl or Blue Peafowl (Pavo cristatus), (Foto: Carolin Pfeiffer)

Indian Peafowl (Pavo cristatus), male, Phasianidae

 

Crested Partridge (Rollulus rouloul), male, Phasianidae (Foto: Carolin Pfeiffer)

Helmeted Guineafowl (Numida meleagris), immature (Foto: Carolin Pfeiffer)

 Indian Peafowl or Blue Peafowl (Pavo cristatus), (Foto: Carolin Pfeiffer)

Crested Guineafowl (Guttera pucherani), left, & Vulturine Guineafowl (Acryllium vulturinum), right

Vulturine Guineafowl (Acryllium vulturinum), (Foto: Mary Yalda)

Vulturine Guineafowl (Acryllium vulturinum), (Foto: Mary Yalda)

Vulturine Guineafowl (Acryllium vulturinum), (Foto: MaryYalda)

Golden Pheasant (Chrysolophus pictus), male, Phasianidae (Foto: Carolin Pfeiffer)