The superorder Strisores is represented only by the order Caprimulgiformes comprising the following families: 

  • Apodidae (Swifts)
  • Hemiprocnidae (Treeswifts)
  • Trochilidae (Hummingbirds)
  • Aegothelidae (Owlet-Nightjars)
  • Podargidae (Frogmouths)
  • Nyctibiidae (Potoos)
  • Steatornithidae (Oilbird)
  • Caprimulgidae (Nightjars)

Mixed family-level and genus-level timetree of extant Strisores based on Prum et al. (2015), White et al. (2019), Chen et al. (2019), Chen & Field (2020), and Kuhl et al. (2021), with the distribution of each taxon being indicated by the colour-code used throughout this website (see Distribution code). Interfamiliar divergence times follow Kuhl et al. (2021). 


Genus-level timetree of extant Apodidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Intergeneric relationships are primarily based on Tietze et al. (2015). The position of Neafrapus is based on Chesser et al. (2018). The position of the Panyptila/Tachornis/Aeronautes clade and the relationships of "Cypseloidinae" and Streptoprocninae are based on Biancalana et al. (2017). The divergence times follow McGuire et al. (2014). 


Genus-level phylogeny of extant Caprimulgidae according to the results of White et al. (2016), with the distribution of each family being indicated by the colour-code used throughout this website (see Distribution code). 


Genus-level phylogeny of extant Trochilidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Polytminae based on Remsen et al. (2015). Three species (Anopetia gounelliiHylonympha macrocercaSternoclyta cyanopectus) are stilled unplaced. 


Genus-level phylogeny of the extant Trochilinae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Trochilini based on Stiles et al. (2017). 


Andermann T, Fernandes AM, Olsson U, Töpel M, Pfeil B, Oxelman B, Aleixo A, Faircloth BC, and Antonelli A (2019), 

Allele phasing greatly improves the phylogenetic utility of ultraconserved elements, Syst. Biol. 68, 32-46. (pdf)

Biancalana RN, Biondo C, and doAmaral FR (2017) The mitochondrial genome of the sooty swift (Cypseloides fumigatus), Mitochondrial DNA Part B, 2:1, 198-200. (pdf)


Bribiesca R, Herrera-Alsina L, Ruiz-Sanchez E, Sanchez-Gonzalez LA, and Schondube JE (2019), Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: a phylogenetic approach, Ecol. Evol. 9, 1623-1637. (pdf)


Chen A, White ND, Benson RBJ, Braun MJ, and Field DJ (2019), Total-evidence framework reveals complex morphological evolution in nightbirds (Strisores), Diversity 11, 143. (pdf)


Chen A, and Field DJ (2020), Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of Phylogenetic NomenclatureVertebr. Zool70, 571-585. (pdf)


Chesser RT, Vaseghi H, Hosner PA, Bergner LM, Cortes-Rodriguez A, Welch AJ, and Collins CT (2018), Molecular systematics of swifts of the genus Chaetura (Aves: Apodiformes: Apodidae), Mol. Phylogenet. Evol. 128, 162-171. (abstract)

Chubb AL (2004), Nuclear corroboration of DNA-DNA hybridisation in deep phylogenies of hummingbirds, swifts, and passerines: the phylogenetic utility of ZENK, Mol. Phylogenetic. Evol. 30, 128-139. (abstract)


Cibois A, Thibault JC, McCormack G, and Pasquet E (2018), Phylogenetic relationships of the Eastern Polynesian swiftlets (Aerodramus, Apodidae) and considerations on other Western Pacific swiftlets. Emu - Austral Ornithology, 118, 247-257. (abstract)


Dumbacher JP, Pratt TK, and Fleischer RC (2003), Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence, Mol. Phylogenet. Evol. 29, 540-50. (abstract)


Feo TJ,Musser JM, Berv J, and Clark CJ (2015), Divergence in morphology, calls, song, mechanical sounds, and genetics support species status for the Inaguan Hummingbird (Trochilidae: Calliphlox "evelynaelyrura), The Auk 132, 248-264. (pdf)


Gruson H, Elias M, Parra JL, Andraud C, Berthier S, Doutrelant C, and Gomez D (2019), Distribution of iridescent colours in hummingbird communities results from the interplay between selection for camouflage and communication. BioRxiv 586362. (pdf)


Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, and Yuri T (2008), A phylogenetic study of birds reveals their evolutionary history, Science 320, 1763-1767. (abstract)


Han KL, Robbins MB, and Braun MJ (2010), A multi-gene estimate of phylogeny in the nicghtjars and nighthawks (Caprimulgidae), Mol. Phylogenet. Evol. 55, 443-453. (abstract)


Hernandez-Banos BE, Zamudio-Beltran LE, Eguiarte-Fruns LE, Klicka J, and Garcia-Morena J (2014), The Basilenna genus (Aves: Trochilidae): an evaluation based on molecular evidence and implications for the genus Hylocharis, Re. Mex. Biodiv. 85, 797-807. (pdf)


Hernandez-Banos BE, Zamudio-Beltran LE, and Mila B (2020), Phylogenetic relationships and systematics of a subclade of Mesoamerican emerald hummingbirds (Aves: Trochilidae: Trochilini), Zootaxa 4748 (3). (abstract)


Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B, and Gahr M (2021), An unbiased molecular approach using 3'UTRs resolves the avian family-tree of life, Mol. Biol. Evol. 38, 108-127. (pdf)


Licona-Vera Y, and Ornelas JF (2019), The conquering of North America: dated phylogenetic and biogeographic inference of migrating behavior in bee ö hummingbirdsBMC Evol. Biol. 17, 126. (pdf)


Liu G, Zhu L, and Zhou G (2019), Complete mitochondrial genomes of five raptors and implications for the phylogenetic relationships between owls and nightjarsPeerJ Preprints. . (pdf)


McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL, Altshuler DL, and Dudley R (2014), Molecular phylogenetics and the diversification of hummingbirdsCurr. Biol. 24, 910-916. (pdf)


Päckert M, Martens J, Wink M, Feigl A, and Tietze DT (2012), Molecular phylogeny of Old World swifts (Aves: Apodiformes, Apodidae, Apus and Tachymarptisbased on mitochondrial and nuclear markers, Mol. Phylogenet. Evol. 63, 606-616. (pdf)


Price JJ, Johnson KP, and Clayton DH (2004), The evolution of echolocation in swiftlets. J. Avian Biol. 35, 135-143. (pdf)


Price JJ, Johnson KP, Bush SE, and Clayton DH (2005), Phylogenetic relationships of the Papuan Swiftlet Aerodramus papuensis and implications for the evolution of avian echolocation, Ibis 147, 790-796. (abstract)


Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, and Lemmon AR (2015), A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature 526, 569-57. (abstract)


Quintero E, and Perktas U (2018), Phylogeny and biogeography of a subclade of mangoes (Aves: Trochilidae), J. Ornithol. 159, 29-46. (abstract)


Remsen JV, Stiles FG, and McGuire JA (2015), Classification of the Polytminae (Aves: Trochilidae)Zootaxa 3957, 143-150.


Rheindt FE, Norman JA, and Christidis L (2014), Extensive diversification across islands in the echolocating Aerodramus swiftlets, Raffles Bull. Zool. 62. 89-99. (pdf)


Rheindt FE, Christidis L, Norman JA, Eaton JA, Sadanandan KR, and Schodde R (2017), Speciation in Indo-Pacific swiftlets (Aves: Apodidae): integrating molecular and phenotypic data for a new provisional taxonomy of the Collocalia esculenta complex. Zootaxa 4250, 401–433. (abstract)


Sangster G (2015), A name for the clade formed by owlet-nightjars, swifts and hummingbirds. Zootaxa 799, 1-6. (pdf)


Sangster G, and Luksenburg JA (2021), Scientific data laundering: chimeric mitogenomes of a sparrowhawk and a nightjar covered-up by forged phylogenies, Biochem. Syst. Ecol, 96: 104263. (abstract)


Sigurdsson S, and Cracraft J (2014), Deciphering the diversity and history of New World nightjars (Aves: Caprimulgidae) using molecular phylogenetics,  Zool. J. Linn. Soc. 170, 506-545. (abstract) 


Stiles FG, Piacentini VDQ, and Remsen JV (2017), A brief history of the generic classification of the Trochilini (Aves: Trochilidae): the chaos of the past and problems to be solved, Zootaxa 4269, 396-412. (abstract)


Stiles FG, Remsen JV, and McGuire JA (2017), The generic classification of the Trochilini (Aves: Trochilidae): reconciling taxonomy with phylogeny, Zootaxa 4353, 401-424. (abstract)


Thomassen HA, Wiersema AT, de Bakker MAG, de Knijff P, Hetebrij E, and Povel GDE (2003), A new phylogeny of swiftlets (Aves: Apodidae) based on cytochrome-b DNA, Mol. Phylogenet. Evol. 29, 86-93. (abstract)


Thomassen HA, den Tex RJ, de Bakker MAG, and Povel GDE (2005), Phylogenetic relationships amongst swifts and swiftlets: a multilocus approach, Mol. Phylogenet. Evol. 37, 264-277. (abstract)


Tietze, DT, Wink M, and Päckert M (2015), Does evolution of plumage patterns and of migratory behaviour in Apodini swifts (Aves: Apodiformes) follow  distributional range shifts? PeerJ PrePrints 3:797v1. (pdf)


Tripp EA, and McDade LA (2013), Time-calibrated phylogenies of hummingbirds and hummingbird-pollinated plants rejects a hypothesis of diffuse co-evolution, Aliso: J. Syst. Evol. Botany 31 (2), article V. (pdf)


White ND, Barrowclough GF, Groth JG, and Braun MJ (2016), A multi-gene estimate of higher-level phylogenetic relationships among nightjars, Ornitol. Neotrop. 27, 223-236. (pdf)


White ND, and Braun MJ (2019), Extracting phylogenetic signal from phylogenomic data: Higher-level relationships of the nightbirds (Strisores). Mol. Phylogenet. Evol. 141, 106611. (abstract)


Xu XQ, and Zhang K (2017), Complete mitochondrial genome and phylogenetic analysis of the chimney swift, Chaetura pelagica, Mitochondrial DNA Part A, 28, 221-222. (abstract)


Zamudio-Beltrán LE, and Hernández-Baños BE (2018), Genetic and morphometric divergence in the Garnet-Throated Hummingbird Lamprolaima rhami (Aves: Trochilidae), PeerJ 6:e5733.