The superorder Strisores is represented only by the order Caprimulgiformes comprising the following families:
Timetree of Strisores based on Prum et al. (2015), White et al. (2019), Chen et al. (2019), Chen & Field (2020), and Kuhl et al. (2021), with the distribution of each taxon being indicated by the colour-code used throughout this website (see Distribution code). Interfamiliar divergence times follow Kuhl et al. (2021).
Timetree of Apodidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Intergeneric relationships are primarily based on Tietze et al. (2015). The position of the genus Neafrapus is based on Chesser et al. (2018). The position of the Panyptila/Tachornis/Aeronautes clade and the relationships of "Cypseloidinae" and Streptoprocninae are based on Biancalana et al. (2017). The divergence times follow McGuire et al. (2014).
Cladogram of Caprimulgidae according to the results of White et al. (2016), with the distribution of each family being indicated by the colour-code used throughout this website (see Distribution code).
Timetree of Trochilidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Polytminae based on Remsen et al. (2015). Three species (Anopetia gounellii, Hylonympha macrocerca, Sternoclyta cyanopectus) are stilled unplaced.
Timetree of the trochilid subfamily Trochilinae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Trochilini based on Stiles et al. (2017).
References
Andermann, T. et al. (2019), Allele phasing greatly improves the phylogenetic utility of ultraconserved elements, Syst. Biol. 68(1), 32-46. (pdf)
Chen, A., N.D. White, R.B.J. Benson, M.J. Braun, and D.J. Field (2019), Total-evidence framework reveals complex morphological evolution in nightbirds
(Strisores), Diversity 11, 143. DOI:10.3390/d11090143. (pdf)
Chen, A., and D.J. Field (2020), Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of
Phylogenetic Nomenclature, Vertebr. Zool. 70(4), 571-585, DOI: 10.26049/VZ70-4-2020-03. (pdf)
Chubb, A.L. (2004), Nuclear corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: The phylogenetic utility
Cibois, A., J.C. Thibault, G. McCormack, and E. Pasquet (2018), Phylogenetic relationships of the Eastern Polynesian swiftlets (Aerodramus, Apodidae) and
considerations on other Western Pacific swiftlets, Emu - Austral Ornithology, 118:3, 247-257. (abstract)
Dumbacher, J.P.,T.K. Pratt, and R.C. Fleischer (2003), Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence, Mol.
Phylogenet. Evol. 29, 540-50. (abstract)
Feo, T.J.,J.M. Musser, J. Berv, and C.J. Clark (2015), Divergence in morphology, calls, song, mechanical sounds, and genetics support species stautus for
the Inaguan Hummingbird (Trochilidae: Calliphlox "evelynae" lyrura), The Auk 132, 248-264. (pdf)
Gruson, H., M. Elias, J.L. Parra, C. Andraud, S. Berthier, C. Doutrelant, and D. Gomez (2019), Distribution of iridescent colours in hummingbird
communities results from the interplay between selection for camouflage and communication, BioRxiv. doi: https://doi.org/10.1101/586362. (pdf)
Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K-L. Han, J. Harshman, C.J. Huddleston, B.D.
Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri (2008), A phylogenetic study of birds reveals their evolutionary history, Science 320, 1763-1767. (abstract)
Han, K.-L., M.B. Robbins, and M.J. Braun (2010), A multi-gene estimate of phylogeny in the nightjars and nighthawks (Caprimulgidae), Mol. Phylogenet.
Evol. 55, 443-453. DOI: 10.1016/j.ympev.2010.01.023. (abstract)
Hernandez-Banos, B.E., L.E. Zamudio-Beltran, L.E. Eguiarte-Fruns, J. Klicka, and J. Garcia-Morena (2014), The Basilinna genus (Aves: Trochilidae): an
evaluation based on molecular evidence and implications for the genus Hylocharis, Re. Mex. Biodiv. 85, 797-807. (pdf)
Hernandez-Banos, B.E., L.E. Zamudio-Beltran, and B. Mila (2020), Phylogenetic relationships and systematics of a subclade of Mesoamerican emerald
hummingbirds (Aves: Trochilidae: Trochilini), Zootaxa 4748(3). DOI: 10.11646/Zootaxa.4748.3.11. (abstract)
Kuhl, H., C. Frankl-Vilches, A. Bakker, G. Mayr, G. Nikolaus, S.T. Boerno, S. Klages, B. Timmermann, and M. Gahr (2021), An unbiased molecular
approach using 3'UTRs, resolves the avian family-level tree of life, Mol. Biol. Evol. 38(1), 108-127. msaa191. DOI: 10.1093/molbev/msaa191. (pdf)
Licona-Vera, Y., and J.F. Ornelas (2019), The conquering of North America: dated phylogenetic and biogeographic inference of migrating behavior in bee
hummingbirds, BMC Evol. Biol. 17: 126. (pdf)
Liu, G., L. Zhu, and G. Zhou (2019), Complete mitochondrial genomes of five raptors and implications for the phylogenetic relationships between owls and
nightjars, PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27478v1 | (pdf)
McGuire, J.A., C.C. Witt, J.V. Remsen, Jr., A. Corl, D.L. Rabosky, D.L. Altshuler, and R. Dudley (2014), Molecular phylogenetics and the diversification of
hummingbirds, Current Biology 24, 910-916. (pdf)
Päckert, M., J. Martens, M. Wink, A. Feigl, and D.T. Tietze (2012), Molecular phylogeny of Old World swifts (Aves: Apodiformes, Apodidae, Apus and
Tachymarptis) based on mitochondrial and nuclear markers, Mol. Phylogenet. Evol. 63, 606-616. (pdf)
Price, J.J., K.P. Johnson, and D.H. Clayton (2004), The evolution of echolocation in swiftlets, J. Avian Biol. 35, 135-143. (pdf)
Price, J.J., K.P. Johnson, S.E. Bush, and D.molecular evidenceH. Clayton (2005), Phylogenetic relationships of the Papuan Swiftlet Aerodramus papuensis
and implications for the evolution of avian echolocation, Ibis 147, 790-796. (abstract)
Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon, and A.R. Lemmon (2015), A comprehensive phylogeny of birds (Aves) using
targeted next-generation DNA sequencing, Nature 526, 569-57. (abstract)
Quintero, E., and U. Perktas (2018), Phylogeny and biogeography of a subclade of mangoes (Aves: Trochilidae), J. Ornithol. 159, 29-46. (abstract)
Remsen, J.V., Jr., F.G. Stiles, and J.A.
McGuire (2015), Classification of the Polytminae (Aves: Trochilidae), Zootaxa 3957, 143-150.
Rheindt, F.E., J.A. Norman, and L. Christidis (2014), Extensive diverification across islands in the echolocating Aerodramus swiftlets, Raffles Bull. Zool. 62.
89-99. (pdf)
Rheindt, F.E., L. Christidis, J.A. Norman, J.A. Eaton, K.R.
Sadanandan, and R. Schodde (2017), Speciation in Indo-Pacific swiftlets (Aves: Apodidae):
integrating molecular and phenotypic data for a new provisional taxonomy of the Collocalia esculenta complex. Zootaxa 4250(5): 401–433. (abstract)
Sangster, G. (2015), A name for the clade formed by owlet-nightjars,
swifts and hummingbirds. Zootaxa 799, 1-6. (pdf)
Sigurdsson, S., and J. Cracraft (2014), Deciphering the diversity and history of New World nightjars (Aves: Caprimulgidae) using molecular phylogenetics,
Zool. J. Linn. Soc. 170, 506-545. DOI: 10.1111/zoj.12109. (abstract)
Stiles, F.G, J.V.J. , and J.V. Remsen (2017), A brief history of the generic classification of the Trochilini (Aves: Trochilidae): the chaos of the past and
problems to be solved, Zootaxa 4269, 396-412. (abstract)
Stiles, F.G, J.V.J. Remsen, and J.A. McGuire (2017), The generic classification of the Trochilini (Aves: Trochilidae): reconciling taxonomy with phylogeny,
Zootaxa 4353, 401-424. (abstract)
Thomassen, H.A, A.T. Wiersema, M.A.G. de Bakker, P. de Knijff, E. Hetebrij, and G.D.E. Povel (2003), A new phylogeny of swiftlets (Aves: Apodidae)
based on cytochrome-b DNA, Mol. Phylogenet. Evol. 29, 86-93. (abstract)
Thomassen, H.A, R.-J. den Tex, M.A.G. de Bakker, and G.D.E. Povel (2005), Phylogenetic relationships amongst swifts and swiftlets: a multilocus
approach, Mol. Phylogenet. Evol. 37, 264-277. (abstract)
Tietze, D.T., M. Wink, and M. Päckert (2015), Does evolution of plumage patterns and of migratory behaviour in Apodini swifts (Aves: Apodiformes) follow
distributional range shifts? PeerJ PrePrints 3:e797v1. (pdf)
White, N.D., G.F. Barrowclough, J.G. Groth, and M.J. Braun (2016), A multi-gene estimate of higher-level phylogenetic relationships among nightjars,
Ornito. Neotrop. 27, 223-236. (pdf)
White, N.D., and M.J. Braun (2019), Extracting phylogenetic signal from phylogenomic data: Higher-level relationships of the nightbirds (Strisores). Mol.
Phylogenet. Evol. 141, 106611. DOI:10.1016/j.ympev.2019.106611. (abstract)