This order comprises three families:

  • Apodidae
  • Hemiprocnidae
  • Trochilidae

Timetree of Apodiformes, with the distribution of each taxon being indicated by the colour-code used throughout this website (see Distribution colour code). Family interrelations are based on Prum et al. (2015). 


Timetree of Apodidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution colour code). Intergeneric relationships are primarily based on Tietze et al. (2015). The position of the genus Neafrapus is based on Chesser et al. (2018). The position of the Panyptila/Tachornis/Aeronautes clade and the relationships of "Cypseloidinae" and Streptoprocninae are based on Biancalana et al. (2017). 


Timetree of Trochilidae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution colour code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Polytminae based on Remsen et al. (2015). Three species (Anopetia gounellii, Hylonympha macrocerca, Sternoclyta cyanopectus) are stilled unplaced. 


Timetree of the trochilid subfamily Trochilinae, with the distribution of each genus being indicated by the colour-code used throughout this website (see Distribution colour code). Relationships are based on McGuire et al. (2014), with taxonomic changes within Trochilini based on Stiles et al. (2017). 


Andermann, T. et al. (2019), Allele phasing greatly improves the phylogenetic utility of ultraconserved elements, Syst. Biol. 68(1), 32-46. (pdf)
Biancalana, R.N, C. Biondo, and F.R. doAmaral, (2017), The mitochondrial genome of the sooty swift (Cypseloides fumigatus), Mitochondrial DNA Part B,
2:1, 198-200. (pdf)
Bribiesca, R., L. Herrera-Alsina, E. Ruiz-Sanchez, L.A. Sanchez-Gonzalez, and J.E. Schondube (2019), Body mass as a supertrait linked to abundance and
behavioral dominance in hummingbirds: a phylogenetic approach, Ecol. Evol. 9, 1623-1637. (pdf)
Chesser, R.T., H. Vaseghi., P.A: Hosner, L.M. Bergner, A. Cortes-Rodriguez, A.J. Welch, and C.T. Collins (2018), Molecular systematics of swifts of the
genus Chaetura (Aves: Apodiformes: Apodidae), Mol. Phylogenet. Evol. 128, 162-171. (abstract)

Chubb, A.L. (2004), Nuclear corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: The phylogenetic utility

of ZENK, Mol. Phylogenet. Evol. 30, 128-139. (abstract)

Cibois, A., J.C. Thibault, G. McCormack, and E. Pasquet (2018), Phylogenetic relationships of the Eastern Polynesian swiftlets (Aerodramus, Apodidae) and

considerations on other Western Pacific swiftlets, Emu - Austral Ornithology, 118:3, 247-257. (abstract)

Dumbacher, J.P.,T.K. Pratt, and R.C. Fleischer (2003), Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence, Mol.

Phylogenet. Evol. 29, 540-50. (abstract)

Feo, T.J.,J.M. Musser, J. Berv, and C.J. Clark (2015), Divergence in morphology, calls, song, mechanical sounds, and genetics support species stautus for

the Inaguan Hummingbird (Trochilidae: Calliphlox "evelynae" lyrura), The Auk 132, 248-264. (pdf)

Gruson, H., M. Elias, J.L. Parra, C. Andraud, S. Berthier, C. Doutrelant, and D. Gomez (2019), Distribution of iridescent colours in hummingbird

communities results from the interplay between selection for camouflage and communication, BioRxiv. . (pdf)

Hernandez-Banos, B.E., L.E. Zamudio-Beltran, L.E. Eguiarte-Fruns, J. Klicka, and J. Garcia-Morena (2014), The Basilinna genus (Aves: Trochilidae): an

evaluation based on molecular evidence and implications for the genus Hylocharis, Re. Mex. Biodiv. 85, 797-807. (pdf)

Hernandez-Banos, B.E., L.E. Zamudio-Beltran, and B. Mila (2020), Phylogenetic relationships and systematics of a subclade of Mesoamerican emerald

hummingbirds (Aves: Trochilidae: Trochilini), Zootaxa 4748(3). DOI: 10.11646/Zootaxa.4748.3.11. (abstract)

Licona-Vera, Y., and J.F. Ornelas (2019), The conquering of North America: dated phylogenetic and biogeographic inference of migrating behavior in bee

hummingbirds, BMC Evol. Biol. 17: 126. (pdf)

Liu, G., L. Zhu, and G. Zhou (2019), Complete mitochondrial genomes of five raptors and implications for the phylogenetic relationships between owls and

nightjars, PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27478v1 | (pdf)

McGuire, J.A., C.C. Witt, J.V. Remsen, Jr., A. Corl, D.L. Rabosky, D.L. Altshuler, and R. Dudley (2014), Molecular phylogenetics and the diversification of

hummingbirds, Current Biology 24, 910-916. (pdf)

Päckert, M., J. Martens, M. Wink, A. Feigl, and D.T. Tietze (2012), Molecular phylogeny of Old World swifts (Aves: Apodiformes, Apodidae, Apus and

Tachymarptis) based on mitochondrial and nuclear markers, Mol. Phylogenet. Evol. 63, 606-616. (pdf)

Price, J.J., K.P. Johnson, and D.H. Clayton (2004), The evolution of echolocation in swiftlets, J. Avian Biol. 35, 135-143. (pdf)

Price, J.J., K.P. Johnson, S.E. Bush, and D.molecular evidenceH. Clayton (2005), Phylogenetic relationships of the Papuan Swiftlet Aerodramus papuensis

and implications for the evolution of avian echolocation, Ibis 147, 790-796. (abstract)

Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon, and A.R. Lemmon (2015), A comprehensive phylogeny of birds (Aves) using

targeted next-generation DNA sequencing, Nature 526, 569-57. (abstract)

Quintero, E., and U. Perktas (2018), Phylogeny and biogeography of a subclade of mangoes (Aves: Trochilidae), J. Ornithol. 159, 29-46. (abstract)

Remsen, J.V., Jr., F.G. Stiles, and J.A. McGuire (2015), Classification of the Polytminae (Aves: Trochilidae), Zootaxa 3957, 143-150.

Rheindt, F.E., J.A. Norman, and L. Christidis (2014), Extensive diverification across islands in the echolocating Aerodramus swiftlets, Raffles Bull. Zool. 62.

89-99. (pdf)

Rheindt, F.E., L. Christidis, J.A. Norman, J.A. Eaton, K.R. Sadanandan, and R. Schodde (2017), Speciation in Indo-Pacific swiftlets (Aves: Apodidae):

integrating molecular and phenotypic data for a new provisional taxonomy of the Collocalia esculenta complex. Zootaxa 4250(5): 401–433. (abstract)

Sangster, G. (2005), A name for the clade formed by owlet-nightjars, swifts and hummingbirds, Zootaxa 799(1), 1-6. DOI: . (abstract)

Stiles, F.G, J.V.J. , and J.V. Remsen (2017), A brief history of the generic classification of the Trochilini (Aves: Trochilidae): the chaos of the past and

problems to be solved, Zootaxa 4269, 396-412. (abstract)

Stiles, F.G, J.V.J. Remsen, and J.A. McGuire (2017), The generic classification of the Trochilini (Aves: Trochilidae): reconciling taxonomy with phylogeny,

Zootaxa 4353, 401-424. (abstract)

Thomassen, H.A, A.T. Wiersema, M.A.G. de Bakker, P. de Knijff, E. Hetebrij, and G.D.E. Povel (2003), A new phylogeny of swiftlets (Aves: Apodidae)

based on cytochrome-b DNA, Mol. Phylogenet. Evol. 29, 86-93. (abstract)

Thomassen, H.A, R.-J. den Tex, M.A.G. de Bakker, and G.D.E. Povel (2005), Phylogenetic relationships amongst swifts and swiftlets: a multilocus

approach, Mol. Phylogenet. Evol. 37, 264-277. (abstract)

Tietze, D.T., M. Wink, and M. Päckert (2015), Does evolution of plumage patterns and of migratory behaviour in Apodini swifts (Aves: Apodiformes) follow

distributional range shifts? PeerJ PrePrints 3:e797v1. (pdf)

Tripp, E.A, and L.A McDade (2013), Time-calibrated phylogenies of hummingbirds and hummingbird-pollinated plants rejects a hypothesis of diffuse co-
evolution, Aliso: A Journal of Systematic and Evolutionary Botany 31(2), article V. (pdf)
Xu, X.Q., and K. Zhang (2017), Complete mitochondrial genome and phylogenetic analysis of the chimney swift, Chaetura pelagica, Mitochondrial DNA
Part A, 28:2, 221-222. (abstract)
Zamudio-Beltrán, L.E., and B.E. Hernández-Baños (2018), Genetic and morphometric divergence in the Garnet-Throated Hummingbird Lamprolaima rhami
(Aves: Trochilidae), PeerJ 6:e5733